A scientist's aim in a
discussion with his colleagues is not to persuade, but to clarify. (Leo Szilard)
I've just finished reading "Order out of Chaos: Man's New Dialogue with Nature" by Nobel Laurate Ilya Prigogine and Isabelle Stengers. Wary as I am of criticising a Nobel Laureate, I have to say I was disappointed with it.
The first few chapters, on the history of
science, were most enjoyable, and I appreciated the clarity Prigogine and
Stengers brought to the distinction between traditional physics as the science
of reversible processes and chemistry as the science of irreversible processes.
(I should declare my bias here at the outset. By
training and inclination I regard reversible processes as no more than useful
mathematical fictions. All real processes are irreversible. Hier steh ich.)
I began to have serious misgivings in
Chapter IV, where free energy is introduced.
Gibbs’ conception of free energy is a powerful tool for understanding
the universe because it combines that which is seen and that which is not seen:
the entropy change in the system and the entropy change in the surroundings,
the rest of the universe. In “Order out
of Chaos”, free energy is introduced merely as a function used to define
equilibrium in closed systems, without describing its fundamental link to
entropy, and its usefulness in understanding the formation of dissipative
structures is explicitly (and incorrectly) denied in subsequent chapters.
The discussion of oscillating reactions in
Chapter V is obfuscatory in referring to ‘products’ what should strictly be
called ‘intermediates’, and in neglecting to state not only that the overall
driving force of the reaction A --> E is the
free energy change in the system, but that the direction of each of the
intermediate steps at each point in time is determined by the free energy
change. By focussing on the chimeric
idea of achieving maxima in thermodynamic functions – something only valid at
equilibrium – and ignoring the paramount importance of changes in these
functions (all we ever talk about in chemistry!) the authors draw a veil of
muddle over exciting and interesting phenomena. They claim that ‘the concept of
probability that underlies Boltzmann’s order principle is no longer valid in
that the structures we observe do not correspond to a maximum of complexions’,
but this is only true if a myopic focus is made on the system, rather than the
surroundings. The complex oscillations –
and dissipative structures in general – come about because they are the most
efficient means, given the history of the system, to increase the entropy (the number
of complexions) of the surroundings. Structure
does not arise spontaneously within the system: it is propagated from the
interface between the system and the surroundings. This is more clearly seen in the physical
system of the Bénard cell which is also discussed in Chapter V, but it is
equally true for chemical systems. The
confusion that arises from blurring the distinction between system and
surroundings continues throughout the book.
Chapter VI suffers from an overabundance of
metaphors drawn from diverse fields of study that serve to obscure whatever
fundamental point the authors are trying to make. In between a discussion of how termite mounds
are formed and a brief discussion of homogeneous nucleation of phase changes, they
state: “although Boltzmann’s order principle enables us to describe chemical or
biological processes in which differences are levelled out and initial
conditions forgotten, it cannot explain situations such as these, where a few ‘decisions’
in an unstable situation may channel a system formed by a large number of
interactive entities toward a global structure”. It is not true that Boltzmann’s order
principle only enables us to describe chemical or biological processes in which
differences are levelled out: a global structure will spontaneously form in any
number of situations, such as micellisation of a surface active agent, driven
by an increase in the entropy in the unstructured component of the system fully
explicable by Boltzmann’s order principle.
In the real world, homogeneous nucleation of structure is relatively rare.
Physical and chemical transformations to give structure are nucleated
heterogeneously – from the surroundings, and as order propagates inward from
interfaces very different effects can be seen: it is true that Boltzmann’s
principle cannot tell us a priori which
structure will form, whether homogeneously or heterogeneously nucleated, but this
does not mean structure formation per se is in any way incompatible with it.
Not being terribly familiar with Prigogine previously,
I had expected that Stuart Kauffman’s wild concept of ‘order for free’ was based
on a misreading of Prigogine’s work, but all the ingredients for it are here,
alas...:(
No comments:
Post a Comment